Efficient computation of global illumination based

on adaptive density estimation

submitted by

Wong Kam Wah

for the degree of Doctor of Philosophy
at the University of Hong Kong
in September 2001

Temporary Binding for Examination Purposes

Efficient computation of global illumination based

on adaptive density estimation

by

Wong Kam Wah

B.Sc.(Computer Studies) H.K.U. 1990
M.Phil. H.K.U. 1996

A thesis submitted in partial fulfilment of the requirements for
the Degree of Doctor of Philosophy
at the University of Hong Kong.

September 2001

Declaration

I declare that this thesis represents my own work, except where due acknowledgement
is made, and that it has not been previously included in a thesis, dissertation or report
submitted to this University or to any other institution for a degree, diploma or other

qualification.

Wong Kam Wah

Acknowledgements

I would like to thank my advisor, Dr. Wang Wenping, for taking me on as his
student and allowing me to pursue my research interests, and for his support during

the course of this work.

Abstract of thesis entitled

Efficient computation of global illumination based

on adaptive density estimation

submitted by

Wong Kam Wah

for the degree of Doctor of Philosophy
at the University of Hong Kong
in September 2001

This thesis presents a new method of density estimation for the global illumination
framework. In the new method, to represent an illumination function the appropriate
number of terms that should be used in a series of orthogonal basis functions is determined
adaptively and automatically. Moreover, a surface subdivision scheme is combined with the
estimator to increase the accuracy of estimation. We show that our new method is more
efficient than the other similar adaptive meshing approaches.

This thesis also presents an empirical comparison of different density estimation meth-
ods that are applied in the global illumination framework, or proposed in the statistics
literature but have not yet been applied by computer graphics researchers. The compari-
son investigated three estimators (kernel estimator, wavelet thresholding estimator, and our
new estimator) in four different aspects: image quality, Lo error, running time, and memory
and storage requirement. We show that each estimator has its own shortcomings, but our
method is more practical if computational resources are limited.

Lastly, this thesis presents a simple load balancing strategy that can be applied to the
parallel implementation of our new estimator. The strategy is based on the fact that in
our new estimator, polynomial update requires less global information. Therefore, these
tasks can be passed to other idle processors for evaluation without introducing too much
communication overhead. We implemented the parallel algorithm on a cluster of PC, and

an improvement of the speedup factor was obtained.

Chapter 1

Introduction

For solving global illumination, the classical hierarchical radiosity method [12, 28]
cannot easily be extended to handle complex optical effects, such as non-uniform
luminaries or light scattered from a non-diffuse surface. Walter et al [35] proposed
a density estimation framework to solve this problem. Energy-carrying particles are
emitted from each light source, traced through the environment, hit and reflected
from surfaces until they are absorbed probabilistically. Illumination on a surface can
be estimated from the density of particle-hit points on the surface.

The density estimation framework has several advantages over the classical hierar-
chical radiosity method. First, most complex optical effects can easily be simulated.
Secondly, the huge memory requirement in the classical hierarchical radiosity method
can be avoided [29]. Lastly, since particles interact with the raw input geometry
only, the particle tracing stage and surfaces’ illumination estimation are independent
of each other. As a result, the error in the surfaces’ illumination estimation is not
propagated [25, 35].

The illumination on a surface is proportional to the density of the particle-hit
points on the surface. Regions with more particle-hits should have brighter illumi-
nation. Heckbert [14] first noted that reconstructing illumination from particle-hits
is a density estimation problem [27]. Several techniques are given in the statistics

literature for solving the density estimation problem [27]. Some of these techniques

have already been applied by computer graphics researchers; for example, the adap-
tive meshing methods [14, 32], the kernel methods [3, 35], and the orthogonal series
estimator [8].

According to our knowledge, after the density estimation framework was intro-
duced, there has been no research work that investigating the effect of various den-
sity estimation methods on this framework. Obviously the performance of the density
estimator used determines the effectiveness of this framework.

We have developed a new density estimation method for this framework, presented
in Chapter 3. Our method is based on the orthogonal series estimator [27]. In the
orthogonal series estimator, surface illumination is represented by a finite number of
terms in a set of orthogonal basis functions. The main contribution of the new method
is that the appropriate number of terms that should be used in the orthogonal series is
determined adaptively and automatically by the algorithm. Furthermore, in order to
avoid using an overly large number of terms, an adaptive surface subdivision scheme
is incorporated in the new method. Therefore, the new method combines the advan-
tage of orthogonal series estimator approach and adaptive meshing approach. We
show that our new method is more efficient than the other similar adaptive meshing
approaches.

In Chapter 4, we compared the performance of this new method to the other
existing density estimators that do not belong to the adaptive meshing category. We
compared our method with the kernel method and the wavelet thresholding method.
Our results show that each estimator has its own shortcomings in different aspects
(image quality, Ly error, running time, and memory and storage requirement), but
our new estimator is more practical if computational resources are limited.

We have also developed a parallel algorithm for the new method. In the new
estimator, the computational effort is mainly composed of two activities: the ray
shooting tasks and the polynomial update tasks. As the latter one requires local
information only, polynomial update tasks can be passed to the other idle processors

without introducing too much communication overhead. This property leads to a load

balancing strategy for the parallel implementation of our new estimator. We present
the details of this parallel algorithm in Chapter 5. Finally, we give the conclusions in

Chapter 6.

Chapter 2

Background and related work

2.1 Global illumination

In computer graphics terminology, rendering means producing a colored image
from a description of a synthetic scene model. To compute the color, a set of rules
are used for the computation, which take into account the set of light sources in the
scene and the surface properties; for example, whether a surface is reflective or not.
This set of rules are called the illumination model.

There are several illumination models. Some of them try to ignore certain physical
properties during computation in order to gain efficiency. Some models try to handle
as many physical properties as possible, in order to produce so called photo-realistic
images.

The global illumination model is one of the photo-realistic models which tries to
compute the energy emitted from light sources, reflected, or refracted from surfaces
in the scene, and eventually arriving the viewpoint of an observer. Following the
notation of [14], if we denote L as a light source, D a diffuse surface, S a specular
surface, and E the viewpoint of a viewer, the global illumination model computes
all the possible light paths from light sources to the viewer. These paths can be
expressed in the form of a regular expression L(D|S)*E.

Note that classical global illumination algorithms compute certain possible light

paths and ignore the others. For example, recursive ray tracing computes LD(S)*E.
The classical radiosity algorithm assumes that all surfaces in the scene are perfectly
diffuse, therefore the algorithm computes the paths L(D)*E. Chen et al [3] divide all
possible light paths into four classes: (i) direct illumination path LDS*FE; (ii) caustic
path LSTDS*FE; (iii) highlight path LS*E; and (iv) radiosity path L(S|D)*DS*DS*E.
They propose a multi-pass algorithm which uses a combination of ray-tracing and ra-
diosity to handle different light paths. Now, the multi-pass approach has become the
major tool to compute global illumination.

In this thesis we study the first phase of the multi-pass approach, called view-
independent global illumination. In view-independent global illumination, no view
point is specified. The color of different surfaces is computed and stored on the sur-
faces using some representation methods, such as texture, piecewise constant func-
tions, piecewise higher order functions, etc. Written in the form of a regular expres-
sion, the view-independent global illumination computes the light paths L(D|S)*D.
View-independent global illumination has the limitation that the lighting information
is stored on diffuse surfaces only. Therefore, other lighting effects such as specular
highlights are not handled. However, the results of view-independent global illumina-
tion allow for view-independent applications, such as virtual walkthroughs. The rapid
growth of the Internet and the idea of Virtual Reality seeks a demand for efficient
view-independent global illumination algorithm. In addition, the results can also be

passed to the later phases of a multi-pass algorithm.

2.2 Density estimation framework

The first view-independent global illumination algorithm is the classical radiosity
methods [12, 28]. It assumes that all surfaces in a scene are perfectly diffuse, and
it computes all light paths L(D)*D. Several works have been proposed to incor-
porate the specular surfaces in the computation [16]; however, as reported by [34],

these methods are neither robust nor efficient. Recently, Jensen proposed the photon

LN Particle — Edac

\ VN : — N — | particle-hit
{ tracing Disk ot

\ points

saved particle
hit points

Density
estimation

Figure 2.1: The density estimation framework.

mapping method to tackle the problem [17], which makes view-independent global il-
lumination available for industry. Sillion and Puech [26] provide detailed background
materials on this topic.

In this thesis we are interested in one of the approaches called density estimation.
Walter et al [35] proposed a density estimation framework to solve this problem
(Figure 2.1). Energy-carrying particles are emitted from each light source, traced
through the environment, hit and reflected from surfaces until they are absorbed
probabilistically. The surface hit points are stored in secondary storage devices.
[llumination on a surface can then be estimated from the density of particle-hit points
on the surface using the kernel density estimation method.

The density estimation framework has several advantages over the classical hier-
archical radiosity method. As the particle tracing stage and surfaces’ illumination
estimation are independent of each other, most complex optical effects can be simu-
lated. Moreover, the error in the surfaces’ illumination estimation is not propagated.

More complex surface characteristics are also supported. Curve surfaces are eas-

ily incorporated, whereas in the classical radiosity method they are required to be
tessellated into a large number of triangles.

There are two remarks for this framework. The second step, i.e., storing the
particle hit points in secondary storage, is only necessary when the kernel method
is used for density estimation. Other density estimation methods can also be used
to replace the kernel method in the framework, and most of these methods do not
require to store the particle hit points. In Chapter 4 of this thesis we present an
empirical comparison on different density estimation methods when they are applied
to this framework.

The second remark is that this density estimation framework is a probabilistic
technique, which is sometimes called Monte Carlo technique. The algorithm is simpler
than the deterministic one (for example, the classical radiosity method), and most of
the complex visual effects can be simulated. However, as the Monte Carlo approach
usually requires a large number of samples in order to have a reliable result, it is
usually not efficient. Veach [33] provided a detailed description on applying Monte
Carlo methods for light transport simulation. Note that improving the efficiency of

the density estimation framework is one of the most challenging problems.

2.3 Density estimation

The core part of density estimation framework is the density estimation stage.
The density estimation problem can be stated as follow: derive a density function
f(z) that approximates an unknown probability density function f(z) from which
independent samples X1, Xy, ..., X,, are drawn. Researchers in the computer graph-
ics community [14, 25] have realized that in a particle-tracing radiosity method the
illumination reconstruction process is a density estimation problem. In the density
estimation framework, the particles-hit points are the sample points {X;}, and the

illumination function is a scaled probability density function f(z). In this section,

we review some of the commonly used techniques for solving the density estimation

0.4 ; : : .
0.35 - Histogram estimator —— |
03 [—]
0.25 -]
0.2 - i
0.15 -]

0.1 4

0.05 - B

Figure 2.2: A histogram estimator.

problem that are related to our new method.

2.3.1 Histogram

The histogram is the oldest and most widely used density estimator. Suppose that
the domain [a, b] of a variable x is divided into sub-intervals [a + mh,a + (m + 1)h),
each with width h. Let n denote the number of samples drawn from [a,b]. The

histogram estimator is defined by

1
flz) = Z% * (no. of X; in the same bin of x) ,

i=1

Figure 2.2 shows an example of the histogram estimator for the samples {2, 2.3,
2.5, 3, 4, 4.3, 5.8, 6.6, 8, 8.1}. The “meshing” technique in computer graphics can
be viewed as a two-dimensional implementation of the histogram method: surfaces
in a virtual scene are subdivided into smaller size meshes called “patches”, and the
illumination of a patch is assumed to be piecewise constant. The approximate illumi-
nation of a patch is proportional to the number of particle-hits on the patch. More
sophisticated “adaptive meshing” approaches, such as the one in [32], can also be
viewed as a variation of the histogram method. In that case it allows sub-intervals to

have different width, and the number of sub-intervals is changed adaptively.

2.3.2 Orthogonal series estimator

Meshing approaches assume the surfaces illumination to be piecewise constant.
Surfaces are subdivided into smaller patches in order to represent illumination vari-
ations. In contrast, orthogonal series approaches represent surface illumination by a
series of higher order functions.

Feda [8] proposed a Monte Carlo radiosity algorithm based on the orthogonal
series estimator. Let {¢;,7 > 0} be a complete set of orthonormal basis functions on

an interval I. Suppose that density function f(z) is represented by:

=Y aigiz), wel.
i=0
where a; = [, f(x)dz. An orthogonal estimator is then given by
f(ﬂT) = Z a;i(z) (2.1)

where @; is an estimation of a;. Since {X;} are drawn from the probability density

function f,

|||
g>

o= [F@)(ayds = Flo(x Z@

Note that only a finite number of terms (m in equation (2.1)) are used in the

estimation.

2.4 Problem of existing approaches

Meshing approaches need to subdivide surfaces into smaller patches in order to
represent illumination variations. Deciding how fine a surface should be subdivided
is not an easy task. Adaptive meshing approaches try to overcome this problem
by making the decision automatically during the particle tracing. However, as con-
stant illumination is assumed over patches, it usually takes time before a surface is

subdivided into sufficient small patches. Therefore, the convergence rates of these

approaches are low. Moreover, to represent smooth illumination, a surface has to be
subdivided into a large number of patches. Therefore, the memory requirement of
these approaches is also high.

On the other hand, Feda’s orthogonal series algorithm uses higher order basis
functions to avoid the problem of constant illumination. However, the most important
parameter (m in equation (2.1)) must be specified by the user. Just like deciding how
to subdivide a surface in the histogram method, choosing an appropriate value of m
for each surface is not an easy task. Moreover, when an illumination discontinuity
exists on a surfaces, the orthogonal series estimator cannot give a good result without
surface subdivision. This is one of the main problems to be addressed by our new

method.

10

Chapter 3

The new adaptive density

estimation method

3.1 Overview

The new method is an extension of Feda’s algorithm [8]. Two modifications are
added to the orthogonal series estimator. First, the new method determines auto-
matically for each surface the appropriate number of terms that should be used in the
orthogonal series. Second, when an illumination discontinuity entails an unaccept-
ably large number of terms, the new algorithm subdivides the surface adaptively to
better capture the illumination discontinuities. Hence the new method combines in
a natural manner the advantage of orthogonal series estimator for modeling smooth
variation of illumination and that of adaptive subdivision for modeling illumination

discontinuities.

3.2 Choosing basis functions

We choose Legendre polynomials as the basis functions for quadrilateral surfaces.

The one-dimensional Legendre polynomials are generated by the following recursive

11

formula [31]:

(n+1)Py1(x)=(2n+1) z P,(z) —n P,_y1(z)

where P, is a polynomial of degree n. The normalized Legendre polynomials are

P,(z) = \/n—i-% P,(z),

These polynomials are orthonormal over the domain [—1,1], i.e.,
1 A A
/ P, (z)Pp(z)dz = 6nm ,
-1

where ¢ is the function

1, ifm=mn;
6n,m:

0, otherwise.

For quadrilateral surface with parametric domain D = {(z,y): -1 <z <1,—-1 <
y < 1}, a two-dimensional basis set {Qn,k(x, y)} can be generated by multiplying two

one-dimensional polynomials in the two variables [31]:

A A

Qn,k(x:y) = Pn—k(x)Pk(y) s 0 S k S n.

It is easy to prove that {Qn,k(x, y)} are orthonormal over the domain D:

1 1
[1 [1 Qn,k(ﬁ;y)Qm,j(x,y)dxdy

12

iy
ST
i

Figure 3.1: The first six terms of two-dimensional Legendre basis functions.

For example, the first 6 terms in the two-dimensional Legendre basis are:

Qo,o(x, y) = Po(iﬁ)po(y) Ql,o(l“, y) = Pl(x)Po(y) Q2,0(33, y) = Py(x)Py(y)

A A A

Q1(z,y) = Po(z) Pi(y) Qa,1(7,y) = Pi(z) Pi(y)

For illustration purposes, figure 3.1 shows the three-dimensional plotting of these 6
terms.

Legendre polynomials are chosen as the orthogonal basis functions for the following
reason: Fourier series and Legendre series are two common choices in the orthogonal
series estimator for a finite domain. However, Hall [11] points out that Fourier series
has the problem of “edge effects”, referring to the large bias towards the endpoints
of the domain. Legendre polynomials do not suffer from this deficiency. His paper
concludes that Legendre series is better than Fourier series in the density estimator
method.

Note that the new method is independent of the choice of basis functions, and that

13

other basis functions can also be used. It might be worthwhile to study the influence
of different basis functions on the method, however that is out of the scope of this

thesis.

3.3 Error of an orthogonal series estimator

In order to find the most appropriate number of terms m in equation (2.1), we start
from the formula of the error of an orthogonal series estimator. The performance of
a density estimator is usually measured by the integrated-square error (ISE), defined
by

15E = [[f(z) - f(@)Pds
T

Note that f (z) in the formula depends on the samples, therefore the ISE is only

concerned with the available samples { X1, ..., X, }. It is also appropriate to analyze

the average error over all possible sample sets. The mean-integrated-square error

(MISE) is therefore also of interest:
MISE = B{ [|f(@) - f(@)ds }.
1

where the F operator concerns the expected performance of f (x) over all possible
samples {X71,..., X, }.

If an orthogonal series estimator is used, the formula can be written as:

MISE = E{ /I[Z (@i — a;)¢i(x) — Z aii(w)]dz }
= E[Z (6; — a;)? + Z ai’]
= Z Var(a;) + Z a; , (3.1)

where Var(a;) is the variance of a;.
Equation (3.1) shows the well-known tradeoff between variance and bias in the
density estimation problem [27]. The first term in equation (3.1) is the error intro-

duced by the variance of the estimator (due to insufficient number of samples), and

14

Figure 3.2: Inappropriately chosen values of m. From left to right: all surfaces use
one single term, 45 terms, and the number of terms decided interactively
by the user. The same number of particles (10*) are traced for the three

images.

the second term is the bias of the estimator (due to truncating the infinite series). If
n — 00, Var(a;) — 0; in this case bigger m leads to a smaller bias (the second term
in equation (3.1)), and therefore leads to smaller error. However, if n is finite and
relative small, the variance of a; contributes significantly to the error. Therefore, it
is necessary to set an appropriate value of m so that we may have balance between
the first and the second terms of equation (3.1) to minimize MISE.

Figure 3.2 shows the result of inappropriately chosen values of m. In the left
image all surfaces use only the first term in the series (i.e., the constant term), and
the shading becomes too flat because truncating the infinite series introduced a large
bias in the estimator. In the middle image all surfaces use 45 terms. For those
surfaces with few particle-hits, there are too many terms in the series, and the variance
in the coefficients a; cause visual artifacts. In the right image, we pick values of m
interactively for each surface. For those surfaces with few particle-hits or have smooth
illumination, we choose a smaller m. For the other surfaces we choose a larger m.
The resulting image has fewer visual artifacts.

Equation (3.1) can be further expanded as

_ 1 % A. _ ~2 ¢ 2
MISE_—n_liZ; [2d; = (n+1)a2]+ a?, (3.2)

=0

15

where d; = %Z?Zl ¢:*(X;). Details of the expansion of (3.2) can be found in [20,
5]. Our aim is to choose a number m which minimizes the MISE, or equivalently,

minimizes the function

J(m):ni1.

m
(24— (n-+1)i2],
=0
since the second term on right hand side of (3.2) is independent of m.
In the next section we will present some observations on the characteristics of
J(m) in several typical radiosity setups. Then we will present a new orthogonal

series estimator based the observations.

3.3.1 Characteristics of J(m)

We investigate the behaviour of the function J(m), using several simple scenes
shown in Figure 3.13. In the first three scenes, the receiver contains a smooth illumi-
nation, while in the last two scenes, the receiver’s illumination contains discontinu-
ities. We plot the function J(m) against m, for m between [0..60], when the surface
captures 400, 1600, and 6400 particles, respectively. The charts are shown in the
middle column of Figure 3.13. The right column of Figure 3.13 plots the computed
coefficients a; against 1.

From the charts, we have the following observations:

e the pattern of the function J(m) falls into two categories: (i) for smooth illu-
mination function, an optimal m, denoted as m*, exists which minimizes J(m).
The function J(m) increases (or remains unchange) for all m > m* (as shown
in the middle column of the first three rows in Figure 3.13); (ii) for discontinue
illumination function, there is no such “optimal” m. The function J(m) de-
creases as m increases. Therefore, to reduce the error, we would have to use a
very large value of m (as shown in the middle column of the last two rows in

Figure 3.13).

e For smooth illumination functions, when the number of particle hits, denoted

by n, is small (e.g. 400), the value of m* is not “stable”. When more particles

16

are captured, m* may shift to a larger value. However, the values of m* for
n = 1600 and n = 6400 are more or less the same. We believe that n > 2000 is

sufficiently large for the value of m* to become stable.

e The function J(m) is not necessary monotonic, and may have multiple peaks
in some situations. This is illustrated by the first scene shown in Figure 3.13,
when n = 400. Since the illumination is symmetric on the receiver, there is
no linear variation over the entire surface. Theoretically the coefficients for the
linear terms (m = 1, 2) should be zero, and including these terms in the series
does no harm. However, as variance exists, the computed coefficients a; and a»
are non-zero, and including these terms will even increase the error. Including
later terms in the series (e.g. the quadratic terms when m = 3,4, 5) reduces the

error.

We also study the function J(m) for two more general scenes. The first scene is
the Cornell box with one light source and 18 surfaces, and the second scene is an office
scene with 1 light source and more than 300 surfaces, as shown in Figure 3.3. We
observe that the function J(m) in those scenes exhibits similar behaviour as the one in
the simple scenes in Figure 3.13. Moreover, for all of the scenes we studied, the value
of m* for most surfaces are clustering within the range [0..30], and only few surfaces
(those with illumination discontinuities) require a value of m* outside this range.
Within this range, the values of m* seem to be distributed in a rather random manner,
and are, in fact, strongly dependent on the smoothness of illumination distribution
on a surface. This observation suggests that it would be an extremely difficult and
tedious task for a human user to select by inspection the optimal value of m for each
surface even in a small scene. This problem acutely demands an automatic method
for selecting the best value of m. Based on established results in statistics, we propose

a new algorithm that solves the above problem satisfactorily.

17

number of surfaces

optimal m

imber of surf
IS

Figure 3.3: Distribution of optimal m in the Cornell box scene (top) and the office

scene (bottom).

3.4 The new method

3.4.1 Automatic determination of values of m

Since J(m) may have multiple peaks, to avoid being trapped at a local minimum
one cannot simply increase m incrementally until J(m + 1) > J(m). Rather, the
following strategy is adopted. Based on our extensive testing, we decide M = 30
to be an appropriate upper bound on the number of terms that will be used in the
orthogonal estimator for any surface. M = 30 is appropriate in the sense that it
is large enough to allow enough terms to be used for modeling smooth illumination
accurately and, at the same time, not too big to compromise computational efficiency;
after all, if the optimal value of m exceeds M = 30, it is normally the case where

there is strong illumination discontinuity, and in this case it should be more efficient

18

[
/7I_“‘~
r .
ok 3 ;
s — '\ _'_!__
/ |
,"ll \\".

Figure 3.4: Results without surface subdivision. From left to right: the front

view, top view, analytical solution, and adaptive orthogonal function

approximation. In both cases m = M = 45 is reached.

to subdivide the surface rather than using excessively many terms in the estimating
series. With M having been fixed, we choose a value m* of m that minimizes J(m) for
all m < M. We reiterate that the value M = 30 may not be large enough for surfaces
with illumination discontinuities. This situation will be handled in our method by

using adaptive surface subdivision.

3.4.2 Adaptive surface subdivision

When an illumination discontinuity exists on a relatively large surface, the esti-
mated function based on orthogonal series alone cannot fit the illumination function
very well unless an impractically large number of terms are used. Figure 3.4 shows
two simple scenes illustrating this situation. The images show that even though 45
terms are used, the illumination still fails to produce a good approximation. More-
over, in the region with low gradient the visual artifact is even worse. It is because
if too many number of terms in the series are used, the coefficients in the high order
terms will have large variance. As the high order polynomials have several peaks in

the basis functions, this will cause some noticeable oscillations appear in the images.

19

Figure 3.5: The results of the new estimator with surface subdivision.

To overcome this problem, a surface subdivision scheme is added to the estimator.
When an appropriate number of terms determined by the algorithm reaches a pre-
defined value M, the algorithm subdivides the surface. After subdivision, each sub-
surface will have its own density estimation function, and the late-coming particles hit
on the surface will be captured by a sub-surface. Note that the subdivided surfaces
cannot discard the {a;} it has computed so far, because those {a;} correspond to
the contribution of energy carried by the previous particles captured by the surface
before. Therefore, this estimated function should be added in an appropriate manner
to the sub-surfaces’ illumination estimation at the rendering stage.

There is one problem if surface subdivision is added to the estimator: the es-
timated functions of adjacent sub-surfaces may not be guaranteed to be consistent
along subdivision boundaries. As a result, visual artifacts will appear in the final
image. An interpolation technique is used to alleviate the problem: at a region close
to the subdivision boundary, the estimated functions of the sub-surfaces will be in-
terpolated by a blending function. Figure 3.6 illustrates the process in 1D. Note that
interpolation is applied only at the image-rendering stage as a tools to remove visual
artifact. It will not have any effect on the density estimator. Figure 3.5 shows the

results of the new estimator with surface subdivision, with the same setups as shown

20

f1fx)

Filx) ;
/ \I / 2(x)
R

subsurface 1 subsurface 2

Figure 3.6: The interpolation of two functions near a subdivision boundary. Left:
the two estimated functions do not agree across the subdivision bound-
ary. Right: zoom view of the red rectangular region in the left image. A
blending function is used to interpolate the two functions in the region

with distance < d from the boundary (d is a pre-defined constant).

in Figure 3.4.

3.5 Comparison with Tobler et al approach

Tobler et al [32] give an adaptive meshing algorithm for the particle-tracing ra-
diosity method. Their algorithm allows the surface to have higher order illumination
function terms rather than only constant ones. Despite the resemblance of the new

method to their method, these two methods have the following differences:

e In their method the number of terms used for each surface is specified by the
user, whereas in the new method it is determined automatically. This makes

the new method more practical for complex scenes.

e Their method focuses on adaptive meshing. At each level (the “current level”),
the algorithm uses a “preview level” to keep track of particle-hits in a finer
surface resolution. By comparing the illumination function of the “preview
level” and the “current level”, the algorithm decides whether the surface should
be subdivided or not. In contrast, the new method emphasizes determining the

suitable number of terms used in the series for each surface. Thus no “preview

21

level” is necessary, and a surface is subdivided only when the number of terms

determined is larger than acceptable.

e In their method, after a surface is subdivided, the sub-surfaces use the same
number of terms in the series as their parent surface. In the new method, the
number of terms used by each of the sub-surfaces may differ, and is adaptively
determined. This is a proper treatment, because when a surface is subdivided,
the sub-surfaces will tend to have smoother illumination than their parent; con-

sequently, they should use a smaller number of terms than their parent.

3.6 Experiments and results

Four different methods have been implemented for comparison purpose: (1) AM-
C: Tobler et al [32] adaptive meshing method with constant illumination; (2) AM-H:
same as (1), but with higher order function on each surface (the number of terms
m is defined by the user); (3) FOSE: Feda [8] orthogonal series estimator with a
user defined m and without surface subdivision; (4) NEW: the new method. These
methods are applied to the Cornell-box scene, and the running time, memory used,
and Ly error (MISE) of two surfaces against the number of particles traced are
plotted. The surfaces chosen for error analysis are the floor, which is rough and has
large variation in illumination, and the right red wall which is smooth with small
variation in illumination. For the methods AM-H and FOSE 45 terms for the floor
and 15 terms for the red wall are used. A reference solution is generated by shooting
10® particles to the scene, where each surface has a texture of size 200x200 to capture
particle hits.

The results are shown in figures 3.14 and 3.15. A sequence of images are generated,
as shown in figure 3.17, by increasing the number of particles traced. The images and

the statistics results show that:

e error: the FOSE method gives the largest error. The error will be bounded from

below by some value and cannot be improved anymore if surface subdivision is

22

not used, as the degree is limited. Adaptive meshing methods (AM-C and AM-
H) produce smaller error due to surface subdivision, but AM-C uses a lot of
memory to store the meshes structure in order to achieve this small error level.
The AM-H method avoids the storage problem, but that the user has to choose
a suitable m for each surface makes this method impractical. The new method
generates smaller error than the other three methods (if we ignore the case when
there are too few particles traced, e.g. less than 10000), and it does not require

the user to specify the number m for each surface.

running time: as shown in figure 3.15, the AM-H method takes the longest time
to trace the same number of particles. That is because for every particle-hit the
method has to evaluate a high order illumination function for both the “preview
level” and the “current level”. The new method takes longer time than AM-C
and FOSE because it has to evaluate the function H(m) for all m < M, in

return for a more accurate illumination estimation.

In summary, to achieve the same error level, the new method needs to shoot fewer

particles and runs faster. Figure 3.16 plots the L, error against the running time used

in the four methods. These plots show the superiority of the new method.

3.7 Extension to general cases

3.7.1 Triangles

So far we have only dealt with quadrilateral surfaces. However, in a virtual scene

most of the objects are made up of triangles. Moreover, most modeling packages in

computer graphics industry tessellate all the input primitives into triangles. However,

the basis functions given in section 3.2 are not orthogonal over a triangular domain. In

this section we describe the method given in [31] and [19] to construct an orthonormal

basis set which can be used on triangular domain.

The method starts with the one-dimensional Jacobi polynomials. With arbitrary

23

a, 3 > —1, the one-dimensional Jacobi polynomials are generated by the following

recursive formula:
I @) =1,

JeNw) = Sllat f+2) 2+ (B,

Cn+a+B+1)2n+a+5+2)
2(n+1)(n+a+p+1)
2 2
N 2n+a+ 4+ 1)(a® — 5°%) (@) (7)
2n+ 1) (n+a++1)2n+a+p)
(n+a)in+B8)2n+a+ B +2) (@,8)

C(n+Dn+a+B+1)2n+a+pb) Jao7 ()

The normalized Jacobi polynomials are:

SO z JP)(x)

copyn | lla+B+n+Dla+B+2n+1) o
S (x)_\/2a+f3+1(a+n)!(5+n)!(a+5+n+1))

The Jacobi polynomials are orthogonal over the domain [—1,1] with respect to
weight function (1 — x)*(1 + x)?. Therefore,

1
/ (1= 2)*(1+ 2)° J@D(2) SO (2) dz = Gy -

1

Note that Legendre polynomials are special case of Jacobi polynomials, with both «
and [are set to zero.
Now, with arbitrary «, 8,y > —1, define

A

a,p, 7 e) 2y
Ang(z,y) = Asz,kﬂ 7)(95’9) =(1-a)f éQ_ij’BHH)(2:5 -1 J,E7 ﬁ)(l —z b

It can be shown that the polynomials {A, x(z,y)} are orthogonal over the trian-
gular domain T = {(z,y): 0 <z,y <1, 0 <z +y < 1} with respect to the weight

function z%y#(1 — z — y)":
1 11—z
I= [[a1 2= 0 Ao 0) (o) dady
z=0 J y=0
1
- / (1 — z)Ftoge JERHATHLO) (95 1) JESTAHHL0) (92 1) &
=0

e . 2 . 2
[IO) S 1)y e
Y

-0 -z -z

24

Figure 3.7: Cornell box made up with triangles. From left to right: surfaces before

subdivision, after subdivision, and the final color image.

Let 12__y$ — 1 =t. Then

1
I= / (1 — a)ftege JORFPHELO 94 1) JOSTFHIO (95 1) «
T

=0 -
1-— . N N
[(—2 T B+l / (1 +8)2(1 =) JOP () JOP(t) dt| da .
t=—1
The term inside the square brackets is zero if k # s. If k = s,

1

= 9Bttt m—k

1
/ (1 _ x)2k+,3+7+1xa jT(LZlC];Fﬂ-l"Y-FLa) (Q.T _ 1) j(2k+ﬂ+7+1:a)(2x _ 1) dr .
z=0

Let 22 — 1 =t. Then

1 ' S(2k-+By+1 >(2k+B+7+1
7= TR TaTS / 1(1 _t)2k+5+’7+1(1+t)a fszﬂ v ,a)(t) Jr(nfkﬂ v ,a)(t) dt
t=—
1

= JRiayiaptats Onm - (3.3)

To simplify the computation, we pick & = = v = 0 so that the weight function
become 1. Also, from equation (3.3), we know that A, x(z,y) can be normalized by

multiplying the term v/226+3_ As a result, the orthonormal basis functions we used

for triangle are

N A A 2
Appla,y) = VIS (1= 2)t G0 22 - 1) TPV (2 1)

Figure 3.7 shows the result of the Cornell box when the surfaces are made up of
triangles. It can be seen that the color picture generated is almost the same as the

one with quadrilateral surfaces.

25

Figure 3.8: Tessellate an arbitrary planar surface. From left to right: surface before

subdivision, after subdivision, and the final color image.

3.7.2 Arbitrary planar surfaces

We may tessellate arbitrary planar surfaces into triangles before passing them
to the algorithm. Figure 3.8 shows an octagon before subdivision, after tessellated
into triangles, and the color image produced by our algorithm. It should be noticed
that tessellation may sometimes produce thin and ill-shape triangles, as shown in fig-
ure 3.8. This will usually result in poor illumination continuity along the subdivision
boundaries. A better subdivision scheme, such as the one proposed in [1], can be

applied to produce fewer ill-shape triangles.

3.7.3 Bicubic surfaces

A bicubic surface is defined by the parametric representation

where the p;; are the control points, and the b;(u) = b;(v) are the blending functions.
As the basis functions we used is defined on parametric space, our algorithm can
be directly applied to bicubic surfaces. It treats bicubic surfaces and quadrilateral
surfaces equally. Figure 3.9 shows a simple scene containing a Bezier surface and the

image produced by our algorithm.

26

Figure 3.9: Simple scene contains a bezier surface.

3.7.4 Quadric surfaces

If constant illumination is used, quadric surfaces, such as cylinders, cones and
spheres in scene are usually needed to be tessellated into a large number of triangles
or quadrilaterals. This will increase the ray shooting time because the number of
input primitive increases. Moreover, tessellation also introduces color inconsistencies
along the subdivision boundaries.

On the other hand, quadric surfaces can also be formulated using parametric rep-
resentation Q(u,v). Therefore our algorithm can also be directly applied to quadric
surfaces. Figure 3.10 shows a simple scene containing several quadric surfaces. It
shows that using higher order basis functions, our algorithm produces smoother illu-
mination on quadric surfaces than their tessellated counterpart.

However, it should be noticed that in order to apply our algorithm, the para-
metric representation of the quadric surfaces should have uniform area distribution.
This is similar to the problem of texture mapping: we want to have a parametric
representation such that mapping a texture space [u,v] onto a quadric surface will
result in less distortion. If the representation does not have uniform area distribution,
distortion of estimated illumination will occur, and visual artifacts will appear in the
final image. For example, in the middle image of figure 3.10, we used a parametric
representation as shown in figure 3.11. Figure 3.11 also shows the area distribution of

the corresponding parametric representation. As the differential area at the poles of

27

Figure 3.10: Simple scene contains several quadric surfaces. In the left image
quadric surfaces are tessellated, and in the middle image each quadric
surface is treated as a single surface. In the right image a correct

parametric representation is used.

sphere and the apex of cone approaches zero, nearly no particle hit is recorded near
these locations, and the estimated illumination becomes dark. Figure 3.12 shows the
parametric representation we used to correct the distortion, and the corrected result

is shown in the right image of figure 3.10.

3.8 A practical example

Figure 3.18 shows a synthesized image of the graphics laboratory at the University
of Hong Kong generated by the new method. The model contains 16000 triangles. In
total 107 particles are shot from the light sources, and roughly 10® particles are traced.
The computation takes 5.5 hours on a SGI MIPS R10000 195MHZ processor, with
512MB main memory. This example shows that the new method is more suitable than
the other three methods for complex scenes, because it uses less memory, produces
a better rendering quality, and there is no need to specify the parameter m for each

surface.

28

z
Y
i = _ | V
) e
h
- _“‘.\
— u
u=¢/2n
v=h/H
h
v
H
& () X
u
u=¢/2n
v=h/H

7

SR
PN

u=¢/2m
v=(T2-0)/T

Figure 3.11: Parametric representation of quadric surfaces we used before correc-

tion.

29

u=¢/2n
v=h?/H?

9

<

0 |

K\\\\\‘\\\\“x&\\\\\“

.

u=6/2n
ey 1 =sin G342

Figure 3.12: Parametric representation of quadric surfaces we used to correct the

artifacts in the middle image of figure 3.10.

30

prr e — PP p—
6400 particles it —— 6400 paricles hit —x—
1 08
E 1 3
g E
04
60 o 10 20 20) 50
i
T T T 1 T T T T T
400 particles hit —— 400 paricies it ——
6400 paricles hit —x— 6400 paricles hit —x—
7] 08
@
PO
/‘\/ g
N\]
x g 04
30 w0 50 60 0 10 20 30) 50
m i
T T T 1 T T T T T
400 particles hit —— 400 paricies it ——
6400 particles hit —— 08 6400 particles hit —— |
JESENY
SO q
el
. . . . 08
20 30) 50 60 0 10 20 30) 50
m i
4 T T T T T 1 T T T T T
400 partidles hit —— 400 partidles hit ——
6400 particles hit —— 08 6400 partcles hit —— |
as|]
06 |
2l]
04|
25| 12 oo
E 3
S \ H
s <3 180T
o2 |
a5 | 1
o4l
Ll]
06 |-
45 08
o 10 20 20) 50 60 o 10 20 20) 50
m i
El T T T T T 1 T T T T T
400 particles hit —— 400 paricies hit ——
s | 6400 particles hit —— | 6400 particles hit ——
08
il 1
115 | 1
12+ B z
E 3
25 |] 3
sl]
135 |- - 1
e I
o s
el R N 1
145
0 10 20 30 w0 50 60
m i

Figure 3.13: The behaviour of J(m). From left to right: the scene setup, J(m)

against m, and the coeflicients a; against 7.

31

L2 error of the floor

CPU time (sec)

L2 error of the floor

1.4e-05

1.2e-05 -
1e-05
8e-06 -
6e-06 -
4e-06
2e-06 -

AM-C —
AM-H —
FOSE —
NEW —

I — -

5000

Il Il
1000 10000 100000 1e+06 1
Number of particles

e+07

L2 error of the red-wall

Figure 3.14: The L, error of the methods.

4500
4000
3500
3000
2500
2000
1500
1000

500

0
100

1
1000 10000 100000 1e+06 1
Number of particles

Figure 3.15: CPU time and

Memory used (Mbytes)

3.5e-06 T
AM-C —
3e-06 |- AMH —
FOSE —
2.5e-06 - NEW — 1
2e-06 - 1
1.5e-06 | 1
1e-06 - 1
5e-07 - B
0 ! ! Ll R B ——
100 1000 10000 100000 1e+06 1e+07
Number of particles
55 T
50 AM-C — A
45 | AM-H —]
FOSE —
40 1 NEW —7
35 B
30 B
25 - B
20 B
15 g
10 f
5F — _——
0 Il Il Il Il
100 1000 10000 100000 1e+06 1e+07

Number of particles

memory used by different methods.

1.4e-05
1.2e-05 -
1e-05
8e-06 -
6e-06 -
4e-06 |-
2e-06 -

AM-C —

AM-H — 7

FOSE —
NEW —

P —

) -
1 10 100 1000 1
CPU Time (sec)

0000

L2 error of the red-wall

3.5e-06
3e-06
2.5e-06
2e-06
1.5e-06
1e-06
5e-07

0
0.1

L
10 100
CPU Time (sec)

Figure 3.16: Ly error against running time.

32

1000

10000

Figure 3.17: Final rendered images. From left to right: AM-C, AM-H, FOSE,
NEW. From top to bottom: 10%, 10%, 10°, 10%, and 107 particles are

traced.

33

Figure 3.18: A complex scene rendered by the new method.

34

Chapter 4

Empirical comparison of different

density estimators

In Walter et al [35] original density estimation framework, they proposed to use the
kernel method for the density estimation. They also suggested a heuristic procedure
to choose the tuning parameter (the kernel width). After their paper there have
been some new results on density estimation published in the statistics literature.
For example, the wavelet thresholding method [7] has gained certain attention in
the recent years. However, there has been no results showing which method is more
appropriate for the global illumination problem.

In Chapter 3 we showed that our new density estimation method outperforms
the other similar adaptive meshing approaches. In this chapter we compare the
method with other approaches that do not belong to the adaptive meshing category.
We compare three density estimation methods (our new method, kernel method, and
wavelet thresholding method), both qualitatively (by comparing the rendered images)
and quantitatively (by measuring the error from reference images). We also compare
the running time and the memory requirement of these methods. We conclude, at the
end of this chapter, that each estimator has its own shortcomings in some aspects,

but our method is more practical if computational resources are limited.

35

Figure 4.1: Reference images of the two surfaces chosen for error analysis.

4.1 Experiment setup

Our experiments were done on an Intel Pentium IIT 600MHz PC with 512MB
main memory. We follow the framework described in Chapter 2. The Cornell box, as
shown in figure 2.1, is used as the input scene. Up to 1 million particles (for each color
channel) are shot from the light source. As particles may reflect from the surfaces
they hit, totally 6.6 million particled are traced, generating 3.6 million particle-hit
points.

We wanted all methods under comparison using the same set of particle-hit points.
Therefore, we stored the particle-hit points on each surface are stored in secondary
storage (used totally 47MB disk space). The file is stored in the binary format.
Each entry in the file corresponds to one particle-hit, which contains one integer
representing the id of the surface hit, two floating values representing the parametric
coordinates of the hit point, and one character representing the color channel (R for
red, G for green, and B for blue). We trace and estimate the three color channels
independently.

Based on the particle-hit points, we perform density estimation on the surfaces.
Two surfaces are chosen for the experiment: the floor, which contains two dark area
with sharp shadow boundaries; and the facing wall, which has smooth illumination
over the surface, but has a soft shadow at one of its corners. Figure 4.1 shows the

reference images of these two surfaces. Details of the three density estimation methods

36

02 T T T T T T T 018 T T T T T T T
0.18 - Kernel estimator i 0.16 L Kerne] estimator |
’ Epanechnikov kernel -------- : Epanechnikov kernel -------
0.16 - - 0.14 4
0.14 - T 012 | §
il Y -
008 | | 0.08 E
0.06 b | 0.06 E
0.04 - e 0.04 - 7
0.02 - - 0.02 77 < S\ 4
0 ‘ 0 S
1 2 3 4 5 6 7 8 9 10 0 10

Figure 4.2: Kernel estimators with different kernel widths.

are given in the next section. We estimate the illumination at 256x256 grid points on
the surface, and render a color image for each of the results (figure 4.4 and 4.5).
The reference images are generated by the Monte Carlo Path Tracing method [18],
using 1024 samples for each pixel. The size of the reference images is also 256x256 pix-
els, so that we can measure the error of the estimated images pixel-by-pixel. To mea-
sure the performance of an estimator quantitatively, we used the integrated-square-

error ISE (also called Ly error):
158 = [[f(@) - f@)Pds

where f(z) is the unknown function and f(z) is the estimated function.

4.2 Other density estimators being compared

4.2.1 Kernel estimator

The kernel estimator is the most commonly used method for density estimation,
and there are vast theories and results available in the statistics literature. Let K(z)
be a kernel function satisfying the condition [K(z)dz = 1. The scaled kernel Kj(z)
with kernel width A (also called the bandwidth) is defined as Kj(z) = + K (£). With

sample size n, the estimated function is defined as
. 1 —
falw) =~ > Ku(z - X;) (4.1)
i=1

37

We can think that, for each sample point X;, a kernel is placed centered at the
sample point. The estimated function is the sum of these n kernels. There are dif-
ferent choices for the kernel function. Figure 4.2 shows examples of kernel estimators
with different kernel widths. The kernel function used is the Epanechnikov kernel as

suggested in [35], defined as

21— [of) iffa] <1
K(z) =

0 otherwise.

From figure 4.2 we see that the choice of h affects the resulting estimation, and
choosing a suitable h is not an easy task [25]. The kernel width should be narrow
enough to capture the details in density distribution, and should be wide enough to

avoid spurious fine structures.

Heuristic kernel width

Walter et al [35] suggested a heuristic choice for the kernel width. In their paper,

h; for surface ¢ is chosen as:
CA;
hi = ’

n;m

where A; is the area of surface 7, n; the number of particles hit on it, and C is a
user-specified parameter. The value C is equals to the average number of particle-
hits that the kernel should cover. In [35], C' is suggested to be a value between 4,000
and 16,000.

Automatic bandwidth selection

Instead of heuristic choice, several methods [4] have been proposed to select a
bandwidth automatically. Most of them try to minimize the Ly error. Our experi-
ments follow Sheather and Jones’ approach [24], since it is the most popular “plug-in
selector” used in this area.

It is well known [27] that the L, error of any density estimator f is equal to:
ISE = bias(f)? + variance(f) (4.2)

38

The bias and variance of a kernel estimator with kernel K and width h are given

by [27]
saf e

variance(f,) = %/K(t)zdt ,

Aklr—t

bias(fh ~

where oy = [t?K (t)dt

Substituting the above formulas into (4.2), an optimal A that minimizes the ISE

[K@2dt 17
Ropt = . 4.
Pt [n o2 ff” V2dx (43)

However, the term [f”(z)2dz is unknown. This term can be estimated, using the

is given by

sample points again, with the formula
// IV j
[s = B = s 3L

where L'V is the fourth derivative of another kernel function L, and hy is the kernel
width for L (note that L is not necessary to be equal to K). The kernel width A can
then be set to

[J K(t)*dt]
n o 5 (ho)
To avoid choosing hg arbitrarily, one possible way is to use the same bandwidth

h to estimate [f"(x)?dxz. Therefore, we solve the following equation for h

[K(t)dt
[n o3 ,B(h)]

However, a good bandwidth for estimating f(z) may not be an appropriate band-

width for estimating [f”(z)?dz. The “plug-in selectors” tries to find a reasonable

relationship between hg and h,y. Sheather and Jones [24] suggested the following

formulas

_ [J K (t)*dt))] "

hgy = -
7 o2 S(&(hss

39

where

a=0.920 """,
b=0.912\n""?

A = the sample interquartile range.

In our experiments, we compare the performance of both the Walter’s kernel width
with C' = 4,000 (denoted by hy), as well as the Sheather and Jones’ kernel width
(denoted by hgy).

It should be noticed that the optimality of equation (4.3) is valid only if f(z) has
the second derivative. This formula fails if f has illumination discontinuities. In this
case, the kernel estimator tends oversmooth the function, as shown in our experiment

results in section 4.3.

4.2.2 Wavelet thresholding estimator

Applying wavelets to statistical problems has gained a large attention in the recent
years. In particular, a method called wavelet thresholding estimator is proposed to
solve the density estimation problem. We present a summary of this method in this
section. Details about basic wavelet theory can be found in [2], and details of the
wavelet thresholding estimator can be found in [7, 13].

The wavelet estimator is also an orthogonal series estimator, and the function

being estimated is projected on the wavelet space

flz) = Z k() + Z Z Bixvik(z)

j2J k

40

where ¢ is the father wavelet, ¢ is the mother wavelet, and
pik(r) = 2702z — k),
Yik(r) = 272z — k),

ozj,k:/f(x)gaj,k(x)dx
Bik =/f($)¢j,k($)d$

In order to understand the method, we start from the linear wavelet density esti-

mator

fio(2 Zajmk +ZZ@,M, , (4.4)

j>J k
where d; = 1377 ¢;(X;) and B = £ 370 ¥x(X).-
Note that in practice we will not compute Bj,k directly. Instead we compute the

estimator as

Fiolz Za]om%om(), (4.5)

which is equivalent to (4.4) and the detail coefficients j; can be found out, if neces-
sary, by applying the discrete wavelet transform [13].
The resolution level jg is the tuning parameter in this method. In [13] it is shown

that the L, error of a wavelet estimator is bounded by

1

ISE < 01— +Cogi

(4.6)

where n is the sample size, s + 1 is the regularity of the wavelet, C; and C5 are two
constants that depend on the function f(x) under estimated and the wavelet basis,

but do not depend on j,. The optimal j, is given by
, 1
270 ~ p2sT

Studies [7, 13] show that this linear estimator cannot perform well when the func-

tion has discontinuities. A better non-linear wavelet estimator can be used

J1
le Z O‘Jo,k(pjo,) + Z Z B*j,k¢j,k (x)) (4'7)

Jj>jo k

41

where

. 1
J0 ~v) 2s+1
270 ~ n2s+1 ,

i~
logn’
. Bix(x) if f%x(x)‘3> Ajks
B () = ’
0 otherwise

and {\,x} is a set of properly chosen threshold values.

Even though the mathematical proof of this result is tedious, the intuitive idea
behind this estimator is simple: we set j, in such a way that the balance between
bias and variance is about right (equation (4.6)). Then we try to include some detail
coefficients Bj,k (in higher level j, jo < j < j1) that are not random noise, but represent
some important information about the function. Due to the localization property of
wavelets, those coefficients that are significantly different from zero represent some
non-smoothness of the function at the corresponding location. So we include the
Bj,k

< Ajk), we treat them as noise due to the stochastic nature of the samples,

coefficients {3, : > \j} For those coefficients that are close to zero (indicated

by Bj,k

and discard those coefficients in order to remove the noise.

There are many methods suggested for the choice of {),x}, and in [6] the “universal
threshold” is suggested
Ajg = A= 6/2log(n) , (4.8)
where & is an estimation of the noise magnitude of the wavelet coefficients at the
finest level j;, and is suggested to be computed by the median absolute deviation,
divided by .6745

1
0.6745

MEDIAN]|3;, — MEDIAN(3;,)|] - (4.9)

o=

Therefore, the wavelet thresholding density estimation can be summarized in the

following steps:
1. For each particle-hit, update the coefficients ¢, 1.

42

Figure 4.3: Non-linear wavelet thresholding estimator.

2. After all sample points are processed, apply discrete wavelet transform to obtain

the coefficients &;, , and Bj,k, Jo <7 < 7j1-
3. Compute the “universal threshold” by formula (4.8) and (4.9).
4. Threshold the detail coefficients Bj,k, Jo <7 < J1.

5. Apply inverse discrete wavelet transform to obtain the coefficients &7, , (where

superscript * means thresholded coefficients).

6. Given any position z, compute f (z) by the formula:
fi(z) = Z @;1+1,k%1+1,k(33)
k

Figure 4.3 shows an example of wavelet thresholding estimator. The left image
of figure 4.3 includes the coefficients &;,, only (in equation (4.7)), and discards all
detail coefficients ﬁj,k, jo < j < ji. The middle image includes all detail coefficients.
The right image includes those coefficients that pass the threshold test. This figure
illustrates the idea why the wavelet thresholding estimator works.

In our experiments, we use Daubechies-6 [2] as the wavelet basis function.

4.3 Results

We compared the three density estimators in four different aspects: visual quality,

Ly error, running time, and memory requirement. Results are shown in figure 4.4

43

and 4.5.

4.3.1 Visual quality

It can be seen that the kernel estimator produces images with the best visual
appearance. The pictures contain less noise than the other two estimators. As men-
tioned in section 4.2.1, the kernel estimator tends to oversmooth the function when the
function has discontinuities. From the images of floor we see that the sharp shadow
boundaries are blurred. This situation is even more obvious in Walter’s heuristic
kernel width method, since their kernel width is usually larger than the hg;, results
in a further oversmoothed image. In the wavelet estimator, even though most of the
noise is suppressed by thresholding, the images still contain small spikes. However,
the method tries to preserve the sharp shadow boundaries on the floor. In our new
estimator, as the variance is suppressed by formula (3.3), high frequency noise does
not appear in the final images. Bias is reduced by surface subdivision, but the mis-
match of estimated functions along surface subdivision boundaries produces another

kinds of visual artifacts as mentioned in section 3.4.2 and [36].

4.3.2 L, error

Since the kernel estimator oversmooth the function, they produce the largest Loy
error compare to the other two estimators. The other two estimators achieve a better
Ly error than the kernel estimator, even though they produce some visual artifacts.
This situation is more obvious on the floor than on the wall, because the sharp shadow
boundaries on the floor are strongly biased by the kernel estimator. It is interesting
to notice that the best L, error does not mean the best visual image, because the

human visual system is more sensitive to noise than bias.

4.3.3 Running time

Even though the kernel estimator produces the best visual quality, the long run-

ning time of this method makes it less attractive. From equation (4.1) we see that for

44

each position z, the kernel estimator needs to evaluate the kernel function on every
samples. Moreover, when the sample size is large, the automatic bandwidth selection
takes several hours to compute hg;. On the other hands, the two orthogonal series
estimators need only to evaluate the coefficients (a;, &, x and Bj,k) once. After that,
for each position z, the estimator f(z) (equation (2.1) and (4.7)) is independent of
the sample size n. This makes the two estimators run much faster than the kernel

estimator.

4.3.4 Memory and storage requirement

In order to evaluate equation (4.1), the kernel method needs to read and store
the n sample points in main memory. On the contrary, the two orthogonal series
estimators need to store the coefficients only. The sample points are read from the
disk, the coefficients are updated, and then the sample points can be discarded.
There is no need to store the sample points in main memory. Moreover, it is worth
mentioning that in these two methods the sample points are even not necessary to be
stored in secondary storage. The particle tracing stage and the coefficients updating
stage can be done at the same time. This is an obvious advantage over the kernel

estimator.

4.4 Which one is the best?

The results show that wavelet thresholding estimator can adapt to local illumi-
nation discontinuities, and achieve a better L, error than kernel estimator. This
observation is consistent with the theoretical results given in the statistics literature.
However, even though the method is suitable for data analysis, it may not be suitable
for visual applications such as the global illumination problem, as annoying random
noise exists in the final images. The kernel estimator usually gives an oversmoothed
result, and sharp shadow boundaries are not preserved. However, the visual quality

of this estimator is the best because less noise appears in the final images. When

45

the sample size is large, however, the long running time and the large memory and
storage requirement of kernel estimator makes it less attractive.

When the sample size is small, our new estimator may not give a good result be-
cause surfaces have not been subdivided yet. When the sample size is large, however,
the results produced by our method are comparable to the other estimators. We con-
clude that if the running time and resources (main memory and secondary storage)
is not the major concern, the kernel estimator gives a robust result with better image
quality. If computational resources are limited, the new method we proposed is a

more practical method.

46

Walter kernel hyy=0.91 Walter kernel hyy=0.29 Walter kernel hyy=0.093
ISE=0.666 time=166s ISE=0.215 time=>578s ISE=0.058 time=1400s

SJ kernel hSJ:0.2]. SJ kernel hSJ:0.0gg SJ kernel hSJ:0.062
ISE=0.148 time=65s ISE=0.064 time=114s ISE=0.040 time=1430s

Wavelet thresholding Wavelet thresholding Wavelet thresholding
ISE=0.146 time=12s ISE=0.064 time=13s ISE=0.034 time=23s

New estimator New estimator New estimator

ISE=0.156 time=8s ISE=0.058 time=14s ISE=0.034 time=45s

Figure 4.4: Estimated illumination of the floor. Sample size: 1548 (left column),
14846 (middle column) and 148525 (right column).

Walter kernel hyy=0.746 Walter kernel hyy=0.238 Walter kernel hyy=0.075
ISE=0.313 time=299s ISE=0.031 time=807s ISE=0.013 time=2331s

SJ kernel hSJ:O.].76 SJ kernel hSJZO.OSQ SJ kernel hSJ:0.056
ISE=0.027 time=>58s ISE=0.016 time=223s ISE=0.012 time=2456s

Wavelet thresholding Wavelet thresholding Wavelet thresholding
ISE=0.042 time=12s ISE=0.025 time=14s ISE=0.015 time=26s

New estimator New estimator New estimator

ISE=0.037 time=>5s ISE=0.014 time=14s ISE=0.011 time=48s

Figure 4.5: Estimated illumination of the facing wall. Sample size: 2290 (left
column), 22523 (middle column) and 226175 (right column).

Chapter 5

Parallel implementation issues

Based on today’s technology, a single-processor computer does not have the ca-
pability to achieve realistic rendering at interactive rate. Even though the processor
speed will become faster in the future, the complexity of simulated scenes demand for
highly visual quality will increase as well. On the other hand, even more and more
powerful multi-processor machines or multi-computer clusters are commercially avail-
able. How to make use of this parallel processing power is another major challenge
when designing new graphics algorithms. In this chapter we investigate a parallel

implementation of the new density estimator we described in Chapter 3.

5.1 Reviews of related works

For solving the global illumination problem, many research works have been done
on parallel ray tracing [15, 37]. Most of these methods make use of the ray-coherence
properties of the primary rays or shadow rays to design a load balancing method.
However, these techniques are not suitable for our method because the nature of ray
tracing is different from the density estimation framework. In general there is no
coherence between rays in the density estimation framework. Even in the case when
quasi-random number is used to govern the direction of the primary rays, those rays

diverge in all directions, therefore it reduces the potential of caching the so called

49

“candidate hit-objects”.

Different parallel radiosity algorithms are also proposed in [30, 23, 9, 22]. These
algorithms are based on hierarchical radiosity, which is also different from the density
estimation framework. In hierarchical radiosity, the computation is driven by a pair of
sending surface and receiving surface. With the sending surface and receiving surface
being known, different static and dynamic load balancing strategies can be applied.
However, these kinds of load balancing strategies cannot be directly applied to the
density estimation framework.

The first implementation of a parallel random walk Monte Carlo radiosity algo-
rithm is given in [10]. However, no load balancing solution is proposed in that paper.
Zareski et al [38] gives a parallel implementation of the original density estimation
framework. However, as mentioned in Chapter 2, the original density estimation
framework used secondary storage to store the particle hit points, and the density
estimation phase is performed after the ray shooting phase. As a consequence, the
algorithm in [38] is designed on a shared memory parallel platform and achieve a
satisfactory parallel efficiency. Our new estimator does not store particle hit points
in secondary storage, therefore the method in [38] cannot be directly applied to our

method.

5.2 A parallel implementation of the new density estimator

5.2.1 The parallel model

There are several parallel platforms currently existing, such as SMP, MPP, or
cluster of workstations. As a cluster of workstations is the most scalable and af-
fordable platform, our algorithm is designed for this platform. There is no shared
memory among the processors, and communication between processors are based on
message-passing.

We further assume that a scene is complex enough so that it is infeasible to dupli-

cate the whole scene on each processor. In this case, the scene should be subdivided

50

processor 1 processor 2

processor 3 processor 4

Figure 5.1: Ray shooting in a distributed scene.

and distributed among the processors. Each processor will hold a partial scene only,
as shown in figure 5.1. A ray originating from one processor may hit some local ob-
jects in this processor, and the radiosity value of the hit object can be updated. A
ray may also hit nothing in its local scene and enter another region held in another
processor. In this case, the ray-shooting task should be transferred to the neighbor
processor and continue there. As the number of light sources and scene geometry
in each partial scene is different, load imbalance becomes the major problem in this

approach.

5.2.2 Combining data-driven and demand-driven

In [21], a parallel ray-tracing algorithm was described, which motivated our re-
search work reported in this chapter. Their method combines the “data-driven” tasks
and “demand-driven” tasks to improve the load balancing among processors. In the
“data-driven” approach, the scene is distributed among processors and each processor
holds a partial scene. Each processor is assigned a block of the final image, and ray

tracing is performed on individual processors. If a ray enter into a neighbor region

51

without hitting any local objects, the ray is transferred to the neighbor processor.
However, load imbalance may happen in this approach. To overcome this problem,
their method makes use of coherence between primary rays and shadow rays. Since
primary rays have the same origin and almost the same direction, they are likely
to hit the same objects. It is the same cases in the shadow rays. Therefore, if the
possible hit objects are sent and cached on some other processors, the primary rays
or shadow rays can be traced by that processor. The tracing of primary rays and
tracing of shadow rays are therefore converted as “demand-driven” tasks, and passed
to other idle processors for the computation. A master processor is responsible for
scheduling these “demand-driven” tasks. Their paper shows that by combining the
“data-driven” and “demand-driven” approaches, the load balancing among processors
can be improved significantly.

Unlike the method given in [21], there is no coherence between rays that we can
exploit in the density estimation framework. Therefore, the demand-driven tasks must
be defined from another aspect. Our method makes use of the special computation
pattern of an orthogonal series estimator to improve the load balancing. In our new
estimator, M higher order polynomial functions are needed to be evaluated whenever
a ray hits a surface. We found that these steps are computation intensive, and may
contribute up to 20% of the total execution time. Since only little of scene information
is needed to evaluate these polynomials, these tasks are suitable to be migrated to
another processor. We treat these polynomial update tasks as the “demand-driven”
tasks. In such a way, imbalance workload among processors can be improved. The

next two sections describe our algorithm in details.

5.2.3 Data-driven in density estimation framework

Our algorithm proceeds as followed: when the program starts, a master process
reads the scene and partitions the scene into smaller sub-scenes, based on the binary
space partitioning (BSP) method. At the same time a global BSP tree is built. A
leave node of the global BSP tree holds the I D of a partial scene and also the I D of

52

()

scene 1 scene 2 scene 3 scene 4
processor 1 processor 2 processor 3 processor 4

Figure 5.2: A global BSP tree.

processor which will process this partial scene (figure 5.2). When it is finished, the
global BSP tree is broadcast to all slave processors, and each slave processor reads
the partial scene that it is assigned to.

Afterward, each processor starts the ray shooting process under the density esti-
mation framework. The number of rays it should shoot depends on the emittance of
the light sources in its local sub-scene. Each time when there is no request from the
master, a random ray is generated from the light sources in the sub-scene and the
ray is traced. If the ray hits a local object, the object’s radiosity value is updated.
Otherwise, if the ray enter a neighbor region, the global BSP tree is traversed to find
out which processor is holding the neighbor region. A “ray-shoot” request is then
passed to the master, and the master will pass the request to the neighbor processor
later.

For each slave processor, a “ray-shoot” request may be received from the master
processor. This means that a ray originated from another processor has entered the
sub-scene region held by this processor. This ray is then traced on this processor.

If no more rays need to be traced, the processor sends a “finish” signal to the

master and wait. The master will either send a “finish” signal back when all processors

53

are done, or send some “ray-shoot” requests to this processor. In the latter case, the
slave process needs to process the incoming requests and wait again until the former
happens. Figure 5.3 shows the pseudocode of a slave process.

We adopt the master-slave approach in our algorithm and require all slaves to
send their requests to the master. This will introduce more communication overhead.
However, we still adopt this master-slave approach because determining whether the
whole rendering process has been finished is not a trivial task, and using a master-
slave approach will simplify the situation. When the master has received the “finish”
signal from all the slaves, it can notify the slaves that the whole process has been
done. However, if a slave is allowed to send a “ray-shoot” request directly to the
target processor after the target processor has signal the master that it has been
finished, then the master will have no way to know whether the ray shooting process
has stopped or not.

In order to reduce the communication overhead, several short messages are queued
in a buffer before being sent. When the buffer is full (in our implementation the buffer
size is 20), these messages are then sent as a longer message. It is because sending a
long message at one time has less communication overhead than sending many small

messages one-by-one. Figure 5.4 shows a logical diagram of a master process.

5.2.4 Demand-driven in density estimation framework

Load imbalance is usually a major problem in the “data-driven” approach men-
tioned above. As proposed in [21], we can add “demand-driven” tasks to balance the
workload among processors. Unlike the method given in [21], there is no coherence
between rays that we can exploit in the density estimation framework. Therefore,
the demand-driven tasks must be chosen from another aspect. In our approach, the
high-order polynomial update is treated as the demand-driven task.

In our new density estimation method, apart from the ray-object intersection tests
during ray shooting, most computational time is spent on evaluating the high order

polynomials. Whenever a ray hits an object at X,,, the M polynomial coefficients

54

SlaveMainLoop() {
do {
Test and get request from master;
if (has request)
if (request == “ray-shoot”)
setup the ray;
ShootRay (ray);
else if (need to generate local ray)
ray := generate a local ray;
ShootRay (ray);
} until (no need to generate local ray);
send “finish” signal to master;
while (not done) {
Test and get request from master;
if (has request)
if (request == “ray-shoot”)
setup the ray;
ShootRay(ray);
else if (request == “finish”)

done := true;

ShootRay(ray) {
while (ray not absorbed) {
obj := closest object hit by the ray;
if (obj exists)
update the object’s coefficients;
compute the reflected ray;
else if (ray enter neighbor region)

send “ray-shoot” request to master;

Figure 5.3: A slave process.

55

processor 1

i

i

LT]
(LT
processor

2

1

1

send

receive

(

)

=~ send

=1 receive

Master

scheduling L send
process
{ ~> N— receive

send

receive

I

il

I
1 11
processor

4

-

-

processor 3

Figure 5.4: A master process.

56

stored in the object are needed to be updated

We found that the total time spent on evaluating these polynomials ¢;(X) is sub-
stantial. Figure 5.6 shows a diagram of computational pattern of a direct parallel
implementation of our new density estimation method. This figure shows the exist-
ing of load imbalance. It also shows that the polynomial update tasks contribute a
large portion of the total running time.

However, only little information is required to evaluate the polynomials. Basi-
cally, only the parametric coordinates (u,v) of the hit point on the object is needed.
Therefore, these evaluating tasks will be a good choice for being migrated to other
idle processors. In our algorithm, whenever a processor sends a “finish” signal to the
master, the master will notify the other working processors that there is at least one
idle processor. Afterward, for every particle hit, the polynomial updates in all the
other slaves are postponed and a “poly-eval” request is passed to the master as a
demand-driven task. The slaves can continue tracing the ray or generate other rays
without the need to wait for the result of the polynomial updates.

After receiving a “poly-eval” request, the master processor determines which pro-
cessor is available to evaluate the polynomials. It can, for example, determine from
the length of the out-going buffer queue which processor has fewer tasks to send.
This “poly-eval” request is then sent to that processor. After the polynomials are
evaluated, the resulting coefficients are then passed back to the processor issuing this
request. The issuing processor will update the hit object’s polynomial coefficients
when it receives the results. Figure 5.5 shows the pseudocode of a slave process when
“demand-driven” tasks are added, and figure 5.7 shows the computational pattern of

the new algorithm.

57

SlaveMainLoop() {
do {
Test and get request from master;
if (has request)
if (request == “ray-shoot”)
setup the ray;
ShootRay (ray);
else if (request == “someone-idle”)
deferPolyEval := true;
else if (request == “poly-eval-finish”)
update the object’s coefficients;
else if (need to generate local ray)
ray := generate a local ray;
ShootRay (ray);
} until (no need to generate local ray);
send “finish” signal to master;
while (not done) {
Test and get request from master;

if (has request)

if (request == “ray-shoot”)
setup the ray;
ShootRay (ray);

else if (request == “poly-eval”)

evaluate the polynomials;

send back the results with “poly-eval-finish” signal;
else if (request == “poly-eval-finish”)

update the object’s coefficients;
else if (request == “finish”)

done := true;

ShootRay(ray) {
while (ray not absorbed) {

obj := closest object hit;

if (obj exists)
if (deferPolyEval) send “poly-eval” request to master;
else update the object’s coefficients;
compute the reflected ray;

else if (ray enter neighbor region)

send “ray-shoot” request to master;

58

Figure 5.5: A slave process with demand-driven tasks.

5.3 Results and discussions

We have implemented our algorithm on a cluster of PC with each node is based
on a Pentium III processor. Our program is implemented using C programming
language and the Message-Passing-Interface (MPI) library. Note that non-blocking
message passing library calls, such as MPI_Isend() and MPI Irecv(), are used in the
implementation.

The scene we used is shown in figure 5.8. It contains 36 walls, 15 light sources
and 66 chairs. Each chair contains 92 polygons and 4 spheres. In total there are 6123
polygons and 264 spheres. The scene is divided into 4 sub-scenes automatically by
the algorithm based on the binary-space-partitioning method.

The total number of primary rays shot from the light sources is 100,000. The
execution time is shown in table 5.1. From table 5.1 we found that roughly 20%
of the execution time is used to evaluate the polynomial basis functions. When the
demand-driven algorithm is used, the algorithm runs about 13% faster than that
one without demand-driven tasks. Figure 5.7 shows the running time of the proces-
sors after demand-driven tasks are added. From this figure, we found that most of
the polynomial update tasks are transferred from the busy processors to some idle
Processors.

When no demand-driven tasks are added, the speedup factor is 0.78 for 4 slaves.
When there are demand-driven tasks, the speedup factor increased to 0.9. This
improvement is not very impressive, as the imbalance in ray shooting processes dom-
inates the running time. However, it should be noticed that our method is straight
forward and can be easily combined with other existing load balancing techniques.
Therefore, our strategy can be viewed as a complementary method to the other ex-

isting load balancing techniques.

59

Processor Rays shot Time for Time for | Total time
from light | ray shooting | polynomial
sources update
sequential 1 100,000 | 37.14 (62%) | 13.4 (22%) 60.32
no demand-driven 1 25,000 10.81 3.29 17.75
2 15,000 4.52 2.02 7.72
3 30,000 10.14 4.08 17.87
4 30,000 11.32 4.12 19.13
program finish 19.25
parallel efficiency 8%
with demand-driven 1 25,000 10.87 1.86 16.38
2 15,000 4.35 6.85 12.38
3 30,000 10.06 2.64 16.35
4 30,000 11.06 1.99 16.74
program finish 16.85
parallel efficiency 90%

Table 5.1: CPU time (in sec) used.

60

Running time without demand driven

O Misc
H Poly eval
E Ray shoot

Time (gec)

Processor

Figure 5.6: Computational pattern of a parallel orthogonal series estimation.

Running time with demand driven

20

18

—-
=

—
=

—-
<)

O Misc
W Poly eval
@ Ray shoot

—
<

Time (sec)

Processor

Figure 5.7: Computational pattern of a parallel orthogonal series estimation with

“demand-driven” tasks added.

61

Figure 5.8: Wireframe of the scene used. Top: full view. Bottom: zoom view.

62

Chapter 6

Conclusions

A new method is proposed for estimating the illumination of a surface in the
density estimation framework. The method adds two modifications to the standard
orthogonal series estimator. First, the method determines adaptively and automat-
ically for each surface the appropriate number of terms that should be used in the
series. Second, when an illumination discontinuity exists on a surface, this method
subdivides the surface to improve accuracy. As a result, to achieve the same error
level, the new method uses less memory, requires fewer particles, and runs faster.

We also compared our new method with the kernel method and the wavelet thresh-
olding method. We showed that each estimators has its own shortcomings in some
aspects, but our method is more practical if computational resources are limited. We
also proposed a load balancing strategy for the parallel implementation of our new
estimator. The strategy is based on the special computational pattern of the new
estimator, and it is simple and straight forward so that it can be easily combined
with other existing load balancing techniques.

There is still lot of work to be done with this method. One major problem of the
density estimation framework is that tiny surfaces may not get enough particle-hits
even though a large number of particles have been traced. The chairs in figure 3.18
shows the problem. One way to solve this problem is to trace more particles, as

shown in figure 6.1, but this method increases the computational cost as well. A

63

more sophisticated method has to be developed to solve this problem. Moreover, a
better method has to be developed to rectify the inconsistent shading value across
subdivision boundaries. Lastly, there are many kinds of orthogonal basis functions.
Different sets of basis functions have different properties. It is worthwhile to study
other orthogonal series to see which is the most suitable one for the density estimation

framework.

64

Figure 6.1: The same scene as shown in figure 3.18, when five times the number

of particles have been traced.

65

Contents

List of Figures
1 Introduction

2 Background and related work
2.1 Global illumination oL
2.2 Density estimation framework 00000000
2.3 Density estimation Lo Lo oL
2.3.1 Histogramo o
2.3.2 Orthogonal series estimator

2.4 Problem of existing approaches

3 The new adaptive density estimation method
3.1 Overviewo
3.2 Choosing basis functions o o o000
3.3 Error of an orthogonal series estimator
3.3.1 Characteristics of J(m) oL
3.4 Thenew method L.
3.4.1 Automatic determination of valuesof m
3.4.2 Adaptive surface subdivision
3.5 Comparison with Tobler et al approach

3.6 Experiments and results L.

iii

vi

© ©W o = Ut R~

3.7 Extension to general cases
3.7.1 Triangles
3.7.2 Arbitrary planar surfaces
3.7.3 Bicubicsurfaces Lo
3.7.4 Quadricsurfaces

3.8 Apractical example. L

4 Empirical comparison of different density estimators

4.1 Experiment setup
4.2 Other density estimators being compared
4.2.1 Kernel estimator
4.2.2 Wavelet thresholding estimator
43 Results.o
4.3.1 Visualquality
4.3.2 Lo error
4.3.3 Running time L0000
4.3.4 Memory and storage requirement

4.4 Which one is the best?

5 Parallel implementation issues

5.1 Reviews of related works

5.2 A parallel implementation of the new density estimator

5.2.1 The parallel model
5.2.2 Combining data-driven and demand-driven

5.2.3 Data-driven in density estimation framework

5.2.4 Demand-driven in density estimation framework

5.3 Results and discussionso

6 Conclusions
Bibliography

iv

35
36
37
37
40
43
44
44
44
45
45

49
49
a0
a0
ol
92
o4
99

63

66

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1

The density estimation framework 6
A histogram estimatoro oL 8
The first six two-dimensional Legendre basis functions 13
Inappropriate chosen of m 15
Distribution of optimalm, .. 18
Results without surface subdivision 19
Results with surface subdivision 20
The interpolation of two functions 21
Cornell box made up with triangles 25
Tessellate an arbitrary planar surface 26
Bicubic surfaceo oo 27
Quadric surfaces Lo 28
Parametric representation of quadric surfaces. 29
A better parametric representation of quadric surfaces. 30
The behaviour of J(m)o 31
The Ly error of the methods 32
CPU time and memory used 32
Ly error against running time oL 32
Final rendered images 33
A complex scene rendered by the new method 34
Reference images for error analysis 36

4.2
4.3
4.4
4.5

5.1
9.2
9.3
5.4
9.5
2.6
2.7
5.8

6.1

Kernel estimators with different kernel width 37

Non-linear wavelet thresholding estimator 43
Estimated illumination of the floor 47
Estimated illumination of the facing wall 48
Ray shooting in a distributed scene 51
Aglobal BSP tree 53
Aslave process 55
A master process L. 56
A slave process with demand-driven tasks 58
Computational pattern 61
Computational pattern with “demand-driven” tasks added 61
Wireframe of the sceneused L. 62
A complex scene with more particles traced 65

vi

Bibliography

[1] D. R. Baum, S. Mann, K. P. Smith, and J. M. Winget. Making radiosity usable:
Auomatic preprocessing and meshing techniques for the generation of accurate
radiosity solutions. In Computer Graphics (SIGGRAPH 91 Proceedings), vol-
ume 25, pages 51-60, July 1991.

[2] C.S. Burrus, R. A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet
Transforms - A Primer. Prentice-Hall, 1998.

[3] Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass Turner.
A progressive multi-pass method for global illumination. In Computer Graphics

(SIGGRAPH ’91 Proceedings), volume 25, pages 165-174, July 1991.

[4] S. T. Chiu. A comparative review of bandwidth selection for kernel density

estimation. Statistica Sinica, 6:129-145, 1996.

[5] P. J. Diggle and P. Hall. The selection of terms in an orthogonal series density
estimator. Journal of American Statistical Association, 81:230-233, 1986.

[6] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425-455, 1994.

[7] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard. Density
estimation by wavelet thresholding. The Annals of Statistics, 24(2):508-539,
1996.

66

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Martin Feda. A Monte Carlo approach for Galerkin radiosity. The Visual Com-
puter, 12(8):390-405, 1996.

Chen-Chin Feng and Shi-Nine Yang. A parallel hierarchical radiosity algorithm
for complex scenes. In IEEE Parallel Rendering Symposium, pages 71-78, Octo-
ber 1997.

P. Guitton, J. Roman, and G. Subrenat. Implementation results and analysis of
a parallel progressive radiosity. In IEEE Parallel Rendering Symposium, pages
31-38, October 1995.

P. Hall. Comparison of two orthogonal series methods of estimating a density
and its derivatives on an interval. Journal of Multivariate Analysis, 12:432-449,

1982.

Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radios-
ity algorithm. In Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25,
pages 197-206, July 1991.

W. Hardle, G. Kerkyacharian, D. Pickard, and A. Tsybakov. Wawvelets, Approz-
imation, and Statistical Applications. Lecture Notes in Statistics 129. Springer-

Verlag, 1998.

Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 145-154,
August 1990.

A. Heirich and J. Arvo. Scalable monte carlo image synthesis. In Parallel Com-

puting, volume 3, pages 845860, 1997.

David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method
for non-diffuse environments. In Computer Graphics (ACM SIGGRAPH ’86
Proceedings), pages 133-142, August 1986.

67

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A. K. Peters,
Ltd, 2001.

J. T. Kajiya. The rendering equation. In Computer Graphics (ACM SIGGRAPH
'86 Proceedings), pages 143-150, August 1986.

Tom Koornwinder. Two-variable analogues of the classical orthogonal polyno-

mials. In Theory and Application of Special Functions. Academic Press, 1975.

R. A. Kronmal and M. E. Tarter. The estimation of probability densities and cu-
mulatives by fourier series methods. Journal of American Statistical Association,

63:925-952, 1968.

E. Reinhard and F. W. Jansen. Rendering large scenes using parallel ray tracing.
In First Eurographics Workshop of Parallel Graphics and Visualization, pages
67-80, September 1996.

L. Renambot, B. Arnaldi, T. Priol, and X. Pueyo. Towards efficient parallel
radiosity for dsm-based parallel computers using virtual interfaces. In IEFEE

Parallel Rendering Symposium, pages 79-86, October 1997.

J. Richard and J. P. Singh. Parallel hierarchical computation of specular radios-

ity. In IEEE Parallel Rendering Symposium, pages 59-70, October 1997.

S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection
method for kernel density estimation. J. Roy. Statist. Soc. Ser. B, 53:683—690,
1991.

Peter Shirley, Bretton Wade, Philip Hubbard, David Zareski, Bruce Walter, and
Donald P. Greenberg. Global illumination via density estimation. In Eurographics

Rendering Workshop 1995, June 1995.

F. X. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kauf-
mann, 1994.

68

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
& Hall, 1986.

Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for
radiosity in complex environments. In Proceedings of SIGGRAPH ’94 (Orlando,
Florida, July 24-29, 1994), Computer Graphics Proceedings, Annual Conference
Series, pages 435-442, July 1994.

M. Stamminger, H. Schirmacher, P. Slusallek, and Hans-Peter Seidel. Getting
rid of links in hierarchical radiosity. Computer Graphics Forum, 17(3):165-174,
1998.

W. Sturzlinger, G. Schaufler, and J. Volkert. Load balancing for a parallel ra-
diosity algorithm. In IEEFE Parallel Rendering Symposium, pages 39-46, October
1995.

P. K. Suetin. Orthogonal Polynomials in Two Variables. Gordon & Breach, 1999.

Robert F. Tobler, Alexander Wilkie, Martin Feda, and Werner Purgathofer. A
hierarchical subdivision algorithm for stochastic radiosity methods. In FEuro-

graphics Rendering Workshop 1997, pages 193204, June 1997.

Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
dissertation, Stanford University, December 1997.

John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A two-pass solu-
tion to the rendering equation: a synthesis of ray tracing and radiosity methods.

In Computer Graphics (ACM SIGGRAPH ’87 Proceedings), pages 311-320, 1987.

Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald F. Greenberg.
Global illumination using local linear density estimation. ACM Transactions

on Graphics, 16(3):217-259, July 1997.

K. W. Wong. A new adaptive density estimator for particle-tracing radiosity. In

Pacific Graphics 2000, pages 62-70, October 2000.

69

[37] H-J. Yoon, S. Eun, and J. W. Cho. An image parallel ray tracing using static
load balancing and data prefetching. In First Furographics Workshop of Parallel
Graphics and Visualization, pages 53-66, September 1996.

[38] D. Zareski, B. Wade, P. Hubbard, and P. Shirley. Efficient parallel global illumi-
nation using density estimation. In IEEFE Parallel Rendering Symposium, pages

47-54, October 1995.

70

	Kam-Wah Wong - 1.pdf
	Kam-Wah Wong - abs.pdf
	Kam-Wah Wong - body.pdf
	Kam-Wah Wong - content.pdf
	Kam-Wah Wong - bib.pdf

